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Abstract

ii

A three-parameter model for turbulence spectra and correlation functions,
based on Meijer’s G-functions, is introduced. The model is more flexible than
the traditional von Kdarméan model, but still allows the spectra and correla-
tion functions to be derived analytically. The G-function model reduces to
the von Kérman model for certain combinations of the parameters.
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1.

Introduction

One-half century ago, von Kdrméan (1948) suggested an equation to describe
the spectrum of turbulence. This equation and various associated ones con-
tinue to be used widely. The main benefits of von Kdrmén’s spectral equation
are

1. A realistic inertial subrange: the spectra obey Kolmogorov’s —5/3
power law (Kolmogorov, 1941) for wavenumbers k£ much larger than
1/L, where L is a length scale characteristic of the larger eddies.

2. A realistic spectral rolloff in the energy subrange (kL < 1).

3. Analytical results can be derived for all spectral and correlation func-
tions of interest.

In this note, I refer to von Kérmén’s equation and the various other spectra
and correlations derived from it as “von Kérmén’s model.” The von Karmén
model appears in the literature in many different forms, but generally has
two adjustable parameters. For the form used in this note, the parameters
are a variance and a length scale. The variance parameter is set equal to the
variance of the actual field. The length scale parameter is then chosen to
reproduce the correct dissipation rate for the turbulence, which causes the
model to agree with inertial-subrange data.

One drawback with the von Kdrmdn model, with parameters chosen in this

" manner, is that it may not accurately describe the turbulence spectrum in

the energy subrange. It appears typical that the predicted spectral levels for
the energy subrange are less than actual data. Hence, it may be worthwhile in
some applications to devise a new spectral model, similar to the von Kdrmén
model, but allowing for more flexibility in fitting the energy-subrange region
of the spectrum.

The purpose of this technical note is to propose such a model. The pro-
posed model is based on manipulations of the general transcendental func-
tion known as the Meijer’s G-function. It reduces to the von Kdrmén model
as a special case.



2.

Theory

2.1 One-Dimensional Spectra

The von Kdrmdn equation for the longitudinal spectral density (i.e., the
spectral density for velocity fluctuations with the wavenumber axis aligned
with the velocity components) can be written in the form

_ el 1
 B(1/2,1/3) (1 + k22)5/8

where o2 is the variance, £ a length scale, k the wavenumber (equal to 27
divided by the wavelength), and B () the beta function. It can be easily ver-
ified that this equation obeys Kolmogorov’s k~5/3 power law in the inertial
subrange (k€ > 1).

f (k)

(1)

A useful general property of longitudinal spectra is that the integral length
scale is given by the equation (see, for example, Wilson, 1998)

L==F0. 2)

Hence for the von Kdrméan spectrum

T

L= BA/%13)" 3)

and so we can also write the von Kdrman spectrum in the alternative form

N 2
Fey=2% s @
{1+ [kLB(1/2,1/3) /7] }

The von Kérmén spectrum agrees reasonably well with data from a vari-
ety of turbulence conditions. Generally, the main discrepancies are that the
spectral peak (occurring at k¢ ~ 1) is too sharp, and the predicted spectral
levels in the energy subrange (k¢ < 1) are too low. Sometimes we desire a
spectrum that describes these features of a dataset more realistically than
the von Kédrmén spectrum. Kristensen et al. (1989) have suggested the fol-
lowing equation, which is very similar to the von Kdrman spectrum:

2
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where

_
"= B ©

The parameter y affects the sharpness of the spectral peak. When p = 1, the
Kristensen et al. spectrum reduces to the von Karman spectrum. Kristensen
et al. found that data for the neutral atmospheric shear layer were fit best
using values of u ~ 0.5. Hence, the actual turbulence spectra are less peaked
than in the von Kdrman model.

One drawback of Kristensen et al.’s spectrum is that the correlation func-
tion, which is the Fourier transform of the spectrum, cannot be determined
analytically. Therefore, it would seem worthwhile to find spectral equations
that behave similarly to Kristensen et al.’s, but can still be Fourier trans-
formed. One possibility is

o2l
3B(1/2,1/3+b)
where By (a, b) is the incomplete beta function. Using the fact that B, (a,1) =

x%/a, it can be shown that equation (7) reduces to the von Kdrman spectrum
when b = 1. Furthermore, since B; (a,b) ~ z%/a for z < 1,

~ 2020
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fk)=
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Hence, from equation (2),

1= 2w
~ 5B(1/2,1/3+b)

e 8)

Equation (7) can be written in two alternative forms involving higher tran-
- scendental functions, which will both be found useful later in this paper.
Using equations (6.6.8) and (15.3.4) in Abramowitz and Stegun (1965), we

find 2
- 2 55 11
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where 2F1 () is the hypergeometric function. Furthermore, using equations
(5.6.1) and (5.3.8) in Erdélyi et al. (1953), we have

R ol
k)= 3T (5/6 + b) B (1/2, 1/3+0b) G%% <k2£2

0, —5/6

1/6, 1/6 —b ) )

where G () is the Meijer’s G-function. The Meijer’s G-function is a very
general function, reducing to many of the more common functions, such
as Bessel functions and hypergeometric functions as special cases. In the re-
mainder of this paper, the turbulence model developed based on equation (7)
(and, hence, also eq. (10)) will be called the G-function model.




2.2 Energy Spectrum

Assuming the flow is incompressible, and the turbulence homogeneous and
isotropic, the energy spectrum can be found from the longitudinal spectrum
using the equation (Batchelor, 1953)

d |1df (k)
E (k) = k3dk {k 7 J (11)

Although any of the forms for f (k) given by equations (7) to (10) can
be substituted into the above, it is perhaps easiest to use equation (9) in
conjunction with the differentiation formula for hypergeometric functions,
Abramowitz and Stegun’s (1965) equation (15.2.1). The result is

8(5/6+b) (11/6 + b 17 17 . 23
Ek) = §7/B(1/2)(1/3/+b))02k4[52F1<6 6 b?’_k2€2>' (12)

Again using equations (6.6.8) and (15.3.4) in Abramowitz and Stegun (1965),
the hypergeometric function can be rewritten in terms of the incomplete beta
function:

4(5/6 + b) (11/6 + b)

-5/6
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E (k) =

The form involving Meijer’s G-functions is

4020
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Equations (5.6.74) and (5.3.8) in Erdélyi et al. (1953) were used to derive
- this result.

2.3 Longitudinal Correlation Function

The longitudinal correlation function f (r) is the Fourier cosine transform
of the longitudinal spectrum:

r) =2 /0 ” £ (k) cos (kr) dk. (15)

The solution to this integral is known when the form of f (k) involving
Meijer’s G-functions (eq (10)) is used. Specifically, from equation (7.815.2)
in Gradshteyn and Ryzhik (1994), we have

2y/mo?l o3 (4@2
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This result can be reduced to lower order using equations (5.3.7) and (5.3.9)
in Erdélyi et al. (1953). We obtain
5/6 ) . (16)
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Apparently this result cannot be rewritten in terms of more common func-
tions, such as modified Bessel functions or hypergeometric functions. When
b = 1, though, the G-function can be reduced to one of lower order using
equation (5.3.7) in Erdélyi et al., and we have

02 T 7'2
fr)= T(1/3) (ﬂ) Gt <@§

The function G2 can be related to a modified Bessel function using equa-
tion (5.6.3) in Erdélyi et al., with the result

100 =0 () K (5). a9

This is the correlation function for the von Karman model.

~1/2, —1/6) . (17)

Two-Dimensional Correlation Function

The two-dimensional (2D) correlation function is important for studies of
wave propagation through turbulence. It can be determined from the energy
spectrum using the equation (e.g., Wilson, 1998)
(o o]

b(r) =+ / B(k)Jo (k) . (19)
When the energy spectrum in terms of hypergeometric functions (eq (12))
is substituted into equation (19), we can write the result of the integration
in terms of Meijer’s G-functions using equation (7.542.8) in Gradshteyn and
Ryzhik (1994). Simplifying the result using equations (5.3.7) and (5.3.8) in
Erdélyi et al. (1953), we find

11/6
0, 5/6, b+5/6
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As was the case for the longitudinal correlation function, the G-functions
simplify to modified Bessel functions when b = 1. The result is

0'2 T T T T
b= ?/?21%—1[/3“) (‘22)5/6 (Koo (7) = (35) Ko (3)] - 2v

2.5 Parameter Selection

The von Kéarmén spectrum has two adjustable parameters: the variance
02 and the length scale £. We can determine the variance parameter by
setting it equal to the variance of a given data set. The length scale can be
determined by matching the inertial subrange asymptote (k¢ > 1) of the
data. The inertial-subrange asymptote in the von Kdrman model is

R o223
HOES> k573, (22)

B(1/2,1/3)
The Kolmogorov theory for the inertial subrange leads to the equation
(Kaimal et al., 1972)

Flky = B, (23)

where a; is a constant whose value is approximately 0.52, and € is the
dissipation rate of turbulent kinetic energy. Comparing equations (22) and

(23), we see 2 s
2 c
- [zrumm) T 0

When this relationship is used, our two underlying parameters for the von
Kérmén model become o2 and e. The length scale parameter depends on

. the ratio 03 /e. From equation (3), the predicted value (not the actual value)
of the integral length scale for the von K4rméan model is

T 2132 3
K S B 2 (a_1> e (25)

In the Kristensen et al. and G-function models, there is one additional ad-
justable parameter: u for the former model, and b for the latter. We can
adjust these parameters so that the actual value of the integral length scale
of a given dataset, along with the variance and dissipation rates, are re-
produced. The inertial-subrange asymptote for the Kristensen et al. model
is

R o223 T 5/3 _
e vl M 9



Hence,

The ratio of the integral length scale to the value predicted by the von

Karméan model is
L [,;B(1/2,1/3)J5/2
Lk |BO2m1/30)]

The inertial-subrange asymptote for the G-function model can be deter-
mined using the approximation B; (a,b) ~ B(a,b) for z — 1. We find

(28)

- 0.2[—2/3 _5/3
f(k)zmk . | (29)
Hence,
e 2B (5/6,b) 3/2 53
_[3alB(1/2,1/3+b)] P
_ 6 1 52198 (5/6,b)1%/% o3
L‘?[3B(1/2,1/3+b)] [ o1 } €’ (30)
and
L 5 321 2B(1/2,1/3) 1%2
LvK:[EB(E’/(;’b)J [53(1/2,1/3+b)] ' (31)

Table 1 shows the values of b and p needed to reproduce certain values of
the ratio L/L,.

Curves showing the dependence of L/L,x on the parameter b for the G-
~ function model and the dependence on p for the Kristensen et al. model,
are given in figure 1.

Table 1. Values for b and 1 needed to reproduce certain values of ratio L/L,k.

L/Lyk b U
1 1 1
2 - 0.222 0.544
3 0.137 0.442
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Figure 1. Dependence of ratio L/L,k on parameter b for G-function model, and on y for
Kristensen et al. model.



3.

Results and Discussion

The Meijer’s G-functions in the proposed model can be calculated using the
routines in the commercial software package Mathematica. I was unable to
find such routines from any other source.

A comparison of the longitudinal spectra for the von Kirmén, Kristensen
et al., and G-function models is shown in figure 2. The same variance and
dissipation rates were used in all three models. This results in the same
inertial-subrange asymptote for all the models, as well as the same area
under the curves. Two curves each are shown for the Kristensen et al. and
G-function models, one with the integral length scale equal to twice the value
in the von Kdrméan model, and the other three times the value in the von
Kérman model. Note that when the integral length scale in either the Kris-
tensen et al. or G-function model equals the value in the von Kdrméan model,
the former models reduce to the von Kdrman model. The Kristensen et al.
and G-function models are observed to give similar predictions. However,
there are two notable differences: the peak in the G-function model occurs
at a lower wavenumber, and the transition from the peak to the inertial
subrange is more gradual.

The energy spectrum for the G-function model is shown in figure 3. Curves
for L/Lykx =1, 2, and 3 are shown. (L/Lyk = 1 is the von K4rman model.)
As with the one-dimensional spectra, increasing the ratio L/L,x moves the
peak wavelength to smaller values, while preserving the area under the curve.

~ Curves for the longitudinal correlation function of the G-function model are

shown in figure 4. The main effect of increasing the integral length scale is
to increase the area under the correlation curves.

The 2D correlation function for the G-function model is shown in figure 5.
The 2D structure function, defined as

d(r)=2[(0) - b(r)], (32)

is shown in figure 6. (The coherence of a propagating wave depends on the 2D
structure function (Wilson, 1998).) Although the appearance of the curves
in figure 6 suggests that the inertial subrange asymptote (r/Lyx < 1) in the
G-function model depends on the ratio L/Lyk, in actuality the curves do
converge for very small values of r/L,x. Only when r/Lyx < 1078 do they
differ by less than 1 percent. For large separations (r/Lyx >> 1), increasing
L/L,x leads to larger values of the structure function.
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Figure 2. Longitudinal (one-dimensional) spectra for von Karmén, Kristensen et al., and
G-function models. Kristensen et al. (dashed lines) and G-function (solid lines) models
are shown for integral length scale L equal to twice and three times value in von Karmén
model L, . Dark solid line is von Kdrmén model, and also Kristensen et al. and G-function
models with L/L,x = 1.
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Figure 3. Energy spectrum of G-function model for several values of ratio L/L,k.



ey

o
[{~]
Y
X

o
(2]
T
1

o
~
T
N

=3

Wye=2

o
H
T
1

N

Longtiudinal correlation, £n/c2
(o] o
w (s>}

Uy=1

e
N
T
1

o
P
T
X

2 1 1

05 1 1.5 2 25 3
Normalized separation, Lk

oO

Figure 4. Longitudinal correlation function for G-function for several values of ratio
L/L,k.

2D correlation, H(Nc2/L

0 0.5 1 1.5 2 25 3

Normalized separation, /L«

Figure 5. Two-dimensional correlation function for G-function model for several values of
ratio L/Lyk.

11



10 T T

Py
o
[=]

2D structure function, d(n/o2L

10—2 1 1
10° 10

Normalized separation, /L

! 10

Figure 6. Two-dimensional structure function for G-function model for several values of
ratio L/L,k



4. Concluding Remarks

The G-function model is a reasonable generalization of the von Kirman
model, offering the potential for improved accuracy in the modeling of tur-
bulence spectra and correlation functions. Comparisons with experimental
data, and more experience with application of the model, are needed to
determine the model’s true value.

It is possible to devise other three-parameter models based on Meijer’s G-
functions, besides the specific one proposed in this note. If agreement be-
tween data and the model proposed here is unsatisfactory, it may be worth-
while to attempt such alternative formulations.

One of the drawbacks of the G-function model is that routines to compute
Meijer’s G-functions are required to calculate the correlation functions. At
the present time, only Mathematica offers this capability. However, it is likely
that such routines will become more widely available during the coming
decade.
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